

中国电源学会第二十三届学术年会

The 23rd China Power Supply Society Conference (CPSSC'2019)

Navitas

Let's go GaNFast™

GaNFast™ Power IC Modeling

Jason Zhang, VP of Application and Engineering

CPSSC, Nov 2019

- Introduction
- Spectre models for IC Design
- SPICE models for detailed system simulation
- SIMPLIS models for high level system simulation
- System simulation example: Active Clamp Flyback
- Conclusions

Introduction

- Spectre models for IC Design
- SPICE models for detailed system simulation
- SIMPLIS models for high level system simulation
- System simulation example: Active Clamp Flyback
- Conclusions

Navitas eMode Power FET Technology

- Large RQ FOM advantage
 - High frequency, high power density
- Lateral
 - Convenient voltage isolation
 - Multi device and IC integration
- Standard CMOS production
 - High yield, high capacity, multilevel metallization
 - Ideal for power IC development

GaNFast[™]

650 V Monolithic GaN Integration

World's First GaN Power ICs

- Complicated power IC development requires capable process and IC design environment
 - PDK (Process Design Kit) is essential to reliability and manufacturability of IC products
 - Process corners, mismatch, temperature effect, layout parasitic, and design verification
- Accurate device modeling is essential part of PDK
 - Multi tiered models are developed for accurate and fast system simulation

GàNFast[™]

- Introduction
- Spectre models for IC Design
- SPICE models for detailed system simulation
- SIMPLIS models for high level system simulation
- System simulation example: Active Clamp Flyback
- Conclusions

Power IC Spectre Models: IC Development

- Excellent process design kit:
 - Device symbols
 - Pcells for automated device construction
 - Scalable, accurate
 - Verified for schematic and layout rules
 - Layout parasitic extraction
- Angelov, ASM and silicon models are not suitable
 - Lack of dMode, scalability, flexibility, speed
- Navitas GaN eMode FET scalable VerilogA model
 - Flexible: customized features/equations
 - High correlation between simulation and product
 - High-speed simulations

GaNFas

Accurate over Temperature

• GaN FET I_DV_G Model with Temperature Effects

• Solid lines = measured, dotted lines = Cadence simulation

Accurate over Drain Voltage

- Solid lines = measured, dotted lines = Cadence Spectre
- 20V rated eMode FET

650V rated eMode FET

ID_data_Vg=0V_model	ID_data_Vg=0.5V_model	•	ID_data_Vg=1V_model	•	ID_data_Vg=1.5V_model	•	ID_data_Vg=2V_model
ID_data_Vg=2.5V_model	 ID_data_Vg=3V_model 	٠	ID_data_Vg=3.5V_model	•	ID_data_Vg=4V_model	٠	ID_data_Vg=4.5V_model
 ID_data_Vg=5V_model 	• ID_data_Vg=5.5V_model	•	ID_data_Vg=6V_model	•	ID_data_Vg=6.5V_model	•	ID_data_Vg=7V_model
	ID_mod_Vg=0.5V_data		- ID_mod_Vg=1V_data		D_mod_Vg=1.5V_data		D_mod_Vg=2V_data
ID_mod_Vg=2.5V_data	ID_mod_Vg=3V_data	_	D_mod_Vg=3.5V_data		ID_mod_Vg=4V_data		D_mod_Vg=4.5V_data
	ID_mod_Vg=5.5V_data	_	D_mod_Vg=6V_data		D_mod_Vg=6.5V_data		=ID_mod_Vg=7V_data

Bi-directional Drain Current vs. V_D, V_G GaNFast^m

650V device model simulation with self-heating effects in Spectre

10

- Introduction
- Spectre models for IC Design
- SPICE models for detailed system simulation
- SIMPLIS models for high level system simulation
- System simulation example: Active Clamp Flyback
- Conclusions

Spice Models: Application Simulation

Half Bridge Functional Blocks

Top-Level Model Parameters

#	Parameter Name	Description	Value	Unit
1	V _{CCTH}	V _{cc} Undervoltage Lockout Threshold	9.0	V
2	V _{CCHYS}	V _{cc} Undervoltage Lockout Hysteresis	0.5	V
3	V _{LTH}	V _L Input Logic Threshold	2.5	V
4	V_{LHYS}	V _L Input Logic Hysteresis	0.5	V
5	V _{BTH}	V _B Undervoltage Lockout Threshold	9.0	V
6	V _{BHYS}	V _B Undervoltage Lockout Hysteresis	0.5	V

- Each Navitas power IC product will be released to public with a Spice model
 - It captures all functionalities and behaviors
- Spice models combines Angelov and behavioral techniques
 - Fast and accurate
 - Ideal for detailed in-circuit waveform and power loss study

GaNFast[™]

650V GaN eMode FET Output Curves

GaNFast™

Reverse Conduction Characteristics

- Third quadrant I-V curves at 25C and 150C under gate bias
- Synchronous drive reduces reverse conduction loss

Output Capacitance and Charge Simulation GaNFast

Capacitance

Output Charge

• Model matches the measurement in datasheet

- Introduction
- Spectre models for IC Design
- SPICE models for detailed system simulation
- Simplis model for high level system simulation
- System simulation example: Active Clamp Flyback
- Conclusions

Simplis Models: Ultra Fast System Sim GaNFast

Optimized for system simulation run time

Piece-wise Linear Model

Simulation

Measured

• Nonlinear parameters are largely preserved: speed without loss of accuracy

Simplified Gate Driver

- Gate driver replaced by "Level 1" SIMPLIS native
 - high-level gate driver block
- Driver parameters adjusted to meet timing of T_r , T_f

🖌 Edit Multi-Leve	el MOSFET Driver: U2	n
Model level Cevel 0 Cevel 1 Cevel 2	Multi-Level MOSFET Driver (Version 8.0+) Parameters Input parameters Input parameters Threshold 2 Image: Solution of the stress of the	U1-U1-D 67 R1 VCC D VVC D VVC D VVD D ZZ S V2 + V4 - VDD-CAP V2 + C1 BZX79-6V2 C2 10n D1 100p
		Low-side test circuit

Simulated Switching Waveforms

GaNFast™

- Introduction
- Spectre models for IC Design
- SPICE models for detailed system simulation
- SIMPLIS models for high level system simulation
- System simulation example: Active Clamp Flyback
- Conclusions

Active Clamp Flyback & GaN IC: High Density ZVS

Up to 3x faster charging with half the size and weight for unparalleled mobility.

- World's smallest 27W USB-C
- Available now from **amazon**.com

- World's smallest Charger 42W (30W-C + 18W-A) + Battery Pack (5,000 mAhr)
- Available now from **CAPPIe Store**

ACF Simplis Models: Controller & GaN ICs

Schematic from Texas Instruments. System jointly developed with Navitas

Simplis Sim Example: ACF Steady State

- Detailed and accurate enough for system optimization
- V_{sw} is half-bridge midpoint
 - Detailed soft switching waveforms
- I_{SEC} SR current
 - Rms current analysis and reduction
- I_{PRI} transformer current
 - Minimize negative current to achieve ZVS and reduce rms

Simplis Sim Example: Start-up

- Various modes of operation can be observed and analyzed during startup
 - Current limit mode, burst mode, ACF mode, Vout transient

Simplis Sim Example: Load Transient

- I_o steps from full load to half load
- V_{OUT} rises due to response delay
- Settles down by entering into burst mode

GaNFast™

- Introduction
- Spectre models for IC Design
- SPICE model for detailed system simulation
- Simplis model for high level system simulation
- IC application example: Active Clamp Flyback
- Conclusions

Conclusions

- eMode GaN is suitable for power IC integration
- Proprietary PDK for robust GaN Power IC design and manufacture
- Accurate multi-tier models are developed
- Advanced, highly-accurate, 4-terminal symmetric, scalable GaN FET Verilog model for IC design
- Accurate SPICE model for each product is essential for optimal accuracy
- SIMplis models also available for released products for ultra fast top level system design
- GaNFast[™] Power ICs are successfully developed and in mass production

Let's go GaNFast™